Graph Cuts for Supervised Binary Coding
نویسندگان
چکیده
Learning short binary codes is challenged by the inherent discrete nature of the problem. The graph cuts algorithm is a well-studied discrete label assignment solution in computer vision, but has not yet been applied to solve the binary coding problems. This is partially because it was unclear how to use it to learn the encoding (hashing) functions for out-of-sample generalization. In this paper, we formulate supervised binary coding as a single optimization problem that involves both the encoding functions and the binary label assignment. Then we apply the graph cuts algorithm to address the discrete optimization problem involved, with no continuous relaxation. This method, named as Graph Cuts Coding (GCC), shows competitive results in various datasets.
منابع مشابه
Semi-Supervised Learning with Max-Margin Graph Cuts
This paper proposes a novel algorithm for semisupervised learning. This algorithm learns graph cuts that maximize the margin with respect to the labels induced by the harmonic function solution. We motivate the approach, compare it to existing work, and prove a bound on its generalization error. The quality of our solutions is evaluated on a synthetic problem and three UCI ML repository dataset...
متن کاملSemi-supervised learning and graph cuts for consensus based medical image segmentation
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator’s performance. Such ...
متن کاملA Feature Space View of Spectral Clustering
The transductive SVM is a semi-supervised learning algorithm that searches for a large margin hyperplane in feature space. By withholding the training labels and adding a constraint that favors balanced clusters, it can be turned into a clustering algorithm. The Normalized Cuts clustering algorithm of Shi and Malik, although originally presented as spectral relaxation of a graph cut problem, ca...
متن کاملOn the Relation Between Low Density Separation, Spectral Clustering and Graph Cuts
One of the intuitions underlying many graph-based methods for clustering and semi-supervised learning, is that class or cluster boundaries pass through areas of low probability density. In this paper we provide some formal analysis of that notion for a probability distribution. We introduce a notion of weighted boundary volume, which measures the length of the class/cluster boundary weighted by...
متن کاملA Unified View of Graph-based Semi-Supervised Learning: Label Propagation, Graph-Cuts, and Embeddings
Recent years have seen a growing number of graph-based semisupervised learning methods. While the literature currently contains several of these methods, their relationships with one another and with other graph-based data analysis algorithms remain unclear. In this paper, we present a unified view of graph-based semi-supervised learning. Our framework unifies three important and seemingly unre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014